Pavement effects in TNM and temperature corrections for noise measurements

Judith L. Rochat, Ph.D.

U.S. DOT / RITA / Volpe Center

Environmental Measurement and Modeling Division

Administration

FHWA TNM Pavement Effects Implementation Study

Pavement Effects in TNM

- TNM PEI Study
 - FHWA Traffic Noise Model® (TNM®) Pavement Effects Implementation Study
 - Assessing options for implementing in TNM the effects of pavement on tire/pavement interaction noise
- Investigating ...
 - introducing new pavement-specific vehicle noise emission (REMEL) data
 - introducing tire/pavement noise source adjustments using pavementspecific on-board sound intensity (OBSI) data
 - introducing pavement-specific sound absorption (EFR) values

Pavement-specific REMEL implementation

- Valid option for including a specific pavement type in TNM
 - May be limitations with tonal pavements

- Recommendations for implementation
 - Possible tonality check
 - Sound levels should represent those near the end of pavement surface life
 - Minimum number of events required per vehicle type (in low and high speed ranges)

Pavement-specific REMEL data – # events

Data set #1

Data set #2

- Preliminary implementation results
 - Determined to be a valid way to account for pavement effects in TNM
 - Need to further investigate variation by vehicle type
 - Need to investigate adjustments below 500 Hz

- Recommendations for implementation
 - Need extensive OBSI data representing many pavement types
 - Volpe will be contacting state highway agencies to either
 - obtain approved OBSI data for frequently used pavements or
 - 2) collect OBSI data for frequently used pavements

- Recommendations for implementation (continued)
 - Choice of pavement bin in TNM (general categories and subcategories)

Example categories

general category	sub category	sub-sub category			
DGAC	max aggregate $< x (x = 12 \text{ mm?})$				
	max aggregate ≥ x				
OGAC or PFC	max aggregate < x	porosity $< y (y = 15\%?)$			
		porosity ≥ y			
	max aggregate ≥ x	porosity < y			
		porosity ≥ y			
PCC	Diamond ground				
	Brushed, broomed, burlap-dragged				
	Longitudinally tined	Possibly tine spacing or depth			
	Transversely tined	Possibly tine spacing or depth			

- Recommendations for implementation (continued)
 - Option for FHWA-approved user-defined pavement type
 - Sound levels should represent those near the end of pavement surface life

Pavement-specific EFR values

- Preliminary implementation results
 - TNM analysis showed potential for 2-dB differences wayside, depending on pavement specifications and number of traffic lanes
 - Sound absorption
 measurements in general
 conformance with ANSI
 S1.18 revealed broad
 range in effective flow
 resistivity (EFR) values
 for various pavements

Pavement-specific EFR values

Porous pavements — Can reflections from an underlying pavement explain some "anomalies" in measured sound levels?

Pavement type		Air void (%)	Max aggr size (mm)	Layer thickness	Reflections seen?	OBSI level (dBA)
	PFC	16.8	12.5	0.7	YES	101.5
Shatter Residence of the state	OGFC	21.8	9.5	1.3-1.5	YES	101.3
French Control Production Production Resident	PFC	16.8	12.5	1.3	YES	99.9
	OGFC/ PEM	17.6/13.6	9.5/12.5	0.63/1.25	NO	97.0

FHWA Study of Temperature Corrections for Roadway Vehicles or Traffic Noise Measurements

Temperature corrections study

- Tire/pavement noise measurements temperature effects study
 - Determine relationship between sound level and temperature
 - Contribute to database of temperature correction coefficients
 - Make recommendation on application of temperature corrections
- Draft report completed

Temperature corrections data and analysis

- Wayside data sets examined from the following studies:
 - AZ QPPP Study
 - Caltrans Thin Lift Study (LA 138)
 - TNM PEI Study
 (air temperature ranges up to 26 °F (14 °C))
- Determined temperature correction coefficient for each data set
 (slope of linear regression through data sound level as a function of temperature)
- Determined certainty of slope: "percent certain" = [100 * (1 P-value)]
- Examined application of various temperature correction schemes
 - Includes semi-generic schemes where corrections are categorized by vehicle and pavement type

Temperature correction coefficients

Temperature Coefficients - based on wayside data measured at 50 ft

Application of temperature correction coefficients

Potential dB error for a change in temperature of 18 °F (10 °C)

	Temperature Correction Schemes						
	None	Generic (-0.033 °F, -0.06 °C)	Semi-generic				
Statistics			Sandberg 2004	Bendtsen 2009	This study Scheme #1	This study Scheme #2	This study data- set- specific
Average	-0.41	0.19	0.12	0.03	0.02	0.00	0.00
Standard error of average	0.1787	0.1787	0.1780	0.1771	0.1624	0.1517	0.0000
Evidence of decreased variability (F-test)?		no	no	no	no	no	yes

Temperature corrections – conclusions

- Sound levels usually decrease slightly with increasing temperature
- Without temperature corrections, there may be an error due to temperature variations when comparing data sets
- Recommendations
 - Measure under similar meteorological conditions to minimize temperature effects
 - Determine if it's necessary to make temperature corrections
 - When possible, determine data-set-specific temperature coefficients and apply corrections
 - When specific coefficient is not possible, chose a semi-generic temperature correction scheme (look to ISO) and apply cautiously
 - Will *likely* improve comparability of data sets but there is a risk of impairing comparability
 - For now, report sound levels with and without temperature corrections

Research and Innovative Technology

